Alternative Value Bases and Prices:
 Evidence from the Input-Output Tables of the Swedish Economy ${ }^{1}$

by
George Soklis*

Abstract

This paper extends the empirical investigation of the relationships between labour values, actual prices of production and market prices to the case of alternative 'value bases' using data from the input-output tables of the Swedish economy. It is found that there exist vectors of 'commodity values' that are better approximations of prices than labour values.

INTRODUCTION

In recent years, an increasing number of empirical studies explore the relationships between labour values, actual production prices and market prices. ${ }^{2}$ The main conclusion of these studies is that the vectors of labour values and production prices are quite close to that of market prices, as this can be judged by alternative measures of deviation. These results are usually interpreted as giving support to the labour theory of value as an analytical tool for the understanding of the laws of motion of actual economies.

[^0]However, it is well known that any 'basic' (à la Sraffa, 1960, §6) commodity can be considered as a 'value base' and, therefore, it is possible to determine the so-called 'commodity i values' (Gintis and Bowles, 1981; Roemer, 1986), i.e., the direct and indirect requirements of commodity i necessary to produce one unit of each commodity as gross output. To our knowledge, there are two empirical studies (Cockshott and Cottrell, 1997; Tsoulfidis and Maniatis, 2002), based on input-output tables of the UK and Greek economy, respectively, which have used alternative commodities as value bases. ${ }^{3}$ The conclusion of the aforesaid studies is that commodity values are, by and large, considerably worse approximations of prices than labour values. The purpose of this paper is to estimate the deviations of the vectors of actual production prices and market prices from the vectors of labour values and commodity values associated with the Symmetric Input-Output tables (SIOT) of the Swedish economy (for the years 1995 and 2005). ${ }^{4}$ It is important to note that we decided to use Sweden's input-output tables mainly because there were available comparable tables of not less than ten years chronological distance, which is a sufficient time interval in order to expect differentiated results.

A crucial issue concerning the investigation of the relationships between prices and values is the choice of a theoretical appropriate measure of price-value deviation. As is well known, the results obtained on the basis of the traditional measures of deviation (such as 'correlation coefficient', 'mean absolute deviation', 'mean absolute weighted deviation', 'root-mean-square-percent-error') depend on the arbitrary choice of either the numéraire or the physical measurement units. ${ }^{5}$ In the current study, we avoid the said problems by using the so-called ' d-distance' (Steedman and Tomkins, 1998, pp. 381-382), which constitutes a measure of price-value deviation that is free from $n u$ méraire and measurement-unit dependence.

The remainder of the paper is organized as follows. Section 2 presents the analytic framework. Section 3 provides the results of the empirical analysis. Section 4 concludes.

[^1]
THE ANALYTIC FRAMEWORK

We begin with a closed, linear system with only single-product industries, circulating capital and homogeneous labour, which is not an input to the household sector. The net product is distributed to profits and wages that are paid at the beginning of the common production period and there are no savings out of this income. ${ }^{6}$ All commodities are basic and there are no alternative production techniques. The system is viable, i.e., the Perron-Frobenius eigenvalue, λ_{A}, of the $n \times n$ matrix of input-output coefficients, \mathbf{A}, is less than 1 . Finally, the givens in our analysis are (i) the technical conditions of production, i.e., the pair (\mathbf{A}, \mathbf{l}), where \mathbf{l}^{T} is the $1 \times n$ vector of direct labour inputs (' T ' denotes the transpose of an $n \times 1$ vector); and (ii) the real wage rate, which is represented by the $n \times 1$ vector \mathbf{b}. On the basis of these assumptions, we can write

$$
\begin{align*}
\mathbf{v}^{\mathrm{T}} & \equiv \mathbf{v}^{\mathrm{T}} \mathbf{A}+\mathbf{l}^{\mathrm{T}} \tag{1}\\
\omega & \equiv \mathbf{v}^{\mathrm{T}} \mathbf{b} \tag{2}\\
\mathbf{p}^{\mathrm{T}} & =(1+r)\left(\mathbf{p}^{\mathrm{T}} \mathbf{A}+w \mathbf{l}^{\mathrm{T}}\right) \tag{3}\\
w & \equiv \mathbf{p}^{\mathrm{T}} \mathbf{b} \tag{4}
\end{align*}
$$

where \mathbf{v}, \mathbf{p} are the vectors of labour values and production prices, respectively, ω is the labour value of the real wage bundle, i.e., the direct and indirect input requirements of labour necessary to produce one unit of labour, w the money wage rate, and r the uniform rate of profit. Relations (1) and (3)-(4) entail that

$$
\begin{align*}
& \left.\mathbf{v}^{\mathrm{T}} \equiv \mathbf{I}^{\mathrm{T}} \mathbf{I}-\mathbf{A}\right]^{-1} \tag{5}\\
& \mathbf{p}^{\mathrm{T}}(1+r)^{-1}=\mathbf{p}^{\mathrm{T}} \mathbf{B} \tag{6}
\end{align*}
$$

where $\mathbf{B}\left(\equiv \mathbf{A}+\mathbf{b} \mathbf{l}^{\mathbf{T}}\right)$ represents the matrix of the 'augmented' input-output coefficients, i.e., each coefficient represents the sum of the respective material and wage good input per unit of output. Thus, labour values can be estimated from (5). Each element, v_{j}, of the vector of labour values expresses the 'vertically integrated labour coefficient' (Pasinetti, 1973) for commodity j, i.e., the direct and indirect requirements of labour necessary to produce one unit of commodity j. The coefficients v_{j} or, more specifically, $1 / v_{j}$ are considered as indices of the productivity of labour (see, e.g., Okishio, 1963). Finally, since a non-positive vector of commodity prices is economically insignificant, (6) implies that $(1+r)^{-1}$ is the Perron-Frobenius eigenvalue of \mathbf{B} and \mathbf{p}^{\top} is the corresponding left-hand side eigenvector.

[^2]Now define the 'extended' $m \times m(m=n+1)$ matrix $\mathbf{C} \equiv\left[c_{i j}\right]$ (see, e.g., Okishio, 1963) as

$$
\mathbf{C} \equiv\left(\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{l}^{\mathrm{T}} & 0
\end{array}\right)
$$

This matrix is also known as the 'complete' or 'full' matrix (Bródy, 1970).' On the basis of the above matrix, the vector of labour values is defined by

$$
\begin{equation*}
\mathbf{v}^{\mathrm{T}} \equiv \mathbf{v}^{\mathrm{T}} \mathbf{C}_{(m)}+\mathbf{c}_{m}^{\mathrm{T}} \tag{7}
\end{equation*}
$$

where $\mathbf{C}_{(m)}$ denotes the matrix derived from \mathbf{C} by extracting its m th row and column and $\mathbf{c}_{m}^{\mathrm{T}}$ denotes the m th row of \mathbf{C} if we extract its m th element. Therefore, it can be easily seen that $\mathbf{C}_{(m)}=\mathbf{A}$ and $\mathbf{c}_{m}^{\mathrm{T}}=\mathbf{I}^{\mathrm{T}}$. Furthermore, the labour value of the real wage bundle is given by

$$
\begin{equation*}
\omega \equiv \mathbf{c}_{m}^{\mathrm{T}}\left(\mathbf{I}-\mathbf{C}_{(m)}\right)^{-1} \mathbf{c}^{m} \tag{8}
\end{equation*}
$$

where \mathbf{c}^{m} denotes the m th column of \mathbf{C} if we extract its m th element, i.e., $\mathbf{c}^{m}=\mathbf{b}$. However, labour is just one of the m production inputs that can be considered as a value base. In general, the vector of commodity i values (Gintis and Bowles, 1981, Appendix 1; Roemer, 1986, pp. 24-26) is defined as follows

$$
\begin{equation*}
\mathbf{v}_{i}^{\mathrm{T}} \equiv \mathbf{v}_{i}^{\mathrm{T}} \mathbf{C}_{(i)}+\mathbf{c}_{i}^{\mathrm{T}} \tag{9}
\end{equation*}
$$

where $\mathbf{v}_{i}^{\mathrm{T}} \equiv\left(v_{i}^{i}, v_{2}^{i}, \ldots, v_{i-1}^{i}, v_{i+1}^{i}, \ldots, v_{m}^{i}\right), v_{j}^{i}$ denotes the commodity i value of commodity j, i.e., the total (direct and indirect) requirements of commodity i necessary to produce one unit of gross output of commodity $j,{ }^{8} \mathbf{C}_{(i)}$ denotes the matrix derived from \mathbf{C} by extracting its i th row and column (just as we extracted the m th row and column in order to define the vector of labour values in relation (7) above), and $\mathbf{c}_{i}^{\mathrm{T}}$ denotes the i th row of \mathbf{C} if we extract its i th element (and, therefore, represents the vector of direct input requirements of commodity i). For example, assume that $n=2$ and, therefore, \mathbf{C} is a 3×3 matrix, i.e.,

$$
\mathbf{C}=\left(\begin{array}{ccc}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
l_{1} & l_{2} & 0
\end{array}\right)
$$

Then, the vector of 'commodity 1 values' is given by

$$
\begin{equation*}
\mathbf{v}_{1}^{\mathrm{T}}=\mathbf{v}_{1}^{\mathrm{T}} \mathbf{C}_{(1)}+\mathbf{c}_{1}^{\mathrm{T}} \tag{10}
\end{equation*}
$$

where $\mathbf{v}_{1}^{\mathrm{T}}=\left(v_{2}^{1}, v_{3}^{1}\right), \mathbf{C}_{(1)}=\left(\begin{array}{cc}a_{22} & b_{2} \\ l_{2} & 0\end{array}\right)$ and $\mathbf{c}_{1}^{\mathrm{T}}=\left(a_{12}, b_{1}\right)$. From relation (10) we obtain

[^3]\[

$$
\begin{equation*}
v_{2}^{1}=v_{2}^{1} a_{22}+v_{3}^{1} l_{2}+a_{12} \tag{11}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
v_{3}^{1}=v_{2}^{1} b_{2}+b_{1} \tag{12}
\end{equation*}
$$

Relation (11) gives the direct and indirect requirements of commodity 1 necessary to produce one unit of commodity 2 as gross output, whilst relation (12) gives the direct and indirect requirements of commodity 1 necessary to produce one unit of labour. Analogously, one may obtain the vector of 'commodity 2 values' by extracting the second row and column of matrix \mathbf{C}. Finally, by extracting the third row and column of \mathbf{C} we may obtain the vector of labour values. Thus, in general, the vector of commodity i values is obtained from relation (9) as follows (see also Manresa et al., 1998, p. 359)

$$
\begin{equation*}
\mathbf{v}_{i}^{\mathrm{T}} \equiv \mathbf{c}_{i}^{\mathrm{T}}\left(\mathbf{I}-\mathbf{C}_{(i)}\right)^{-1} \tag{13}
\end{equation*}
$$

whilst the total input requirements of commodity i necessary to produce one unit of itself is given by

$$
\begin{equation*}
\omega_{i} \equiv \mathbf{v}_{i}^{\mathrm{T}} \mathbf{c}^{i}+c_{i i} \tag{14}
\end{equation*}
$$

where \mathbf{c}^{i} denotes the i th column of \mathbb{C} if we extract its i th element, and $\varepsilon_{i} \equiv\left(1-\omega_{i}\right) /$ ω_{i} may be defined as the 'rate of exploitation' of commodity i (see also Gintis and Bowles, 1981, p. 18). Finally, it can be shown that the conditions
$r>0, \omega_{i}<1, \quad \lambda_{\mathrm{c}}<1$
where λ_{c} denotes the Perron-Frobenius eigenvalue of \mathbf{C}, are all equivalent (see Bródy, 1970, Part 1; Manresa et al., 1998, pp. 358-360).'

Although the empirical relationships between prices and labour values have been intensively investigated, the relationships between commodity values and prices have not been examined to the same extent. ${ }^{10}$ In the next section we estimate the deviations of actual prices from labour values and commodity values for the case of the Swedish economy.

RESULTS AND THEIR EVALUATION

The results from the application of the previous analysis to the input-output tables of the Swedish economy for the years 1995 and 2005 are reported in Table 1 and Figures $1-2$. Table 1 reports the largest and smallest deviations of prices from values. The vec-

[^4]Table1. Deviations of prices from values; Swedish economy, 1995 and 2005

```\(d\)-distance (\%) \\ 'Value bases'```	Actual prices of production vs. values for the year 1995 (2005)	Market prices vs. values for the year 1995 (2005)
Labour	14.0 (13.6)	32.0 (21.8)
'Products of forestry' CPA:02	29.0 (30.0)	31.5 (32.2)
'Wearing apparels; furs' CPA: 18	17.2 (16.0)	29.8 (23.0)
'Basic metals' CPA: 27	33.4 (30.8)	47.1 (38.1)
'Secondary raw materials' CPA: 37	31.0 (30.6)	46.9 (39.8)
'Energy products' CPA: 40	14.8 (14.2)	31.8 (19.2)
'Services of water' CPA: 41	20.1 (19.8)	35.9 (19.8)
'Construction work' CPA: 45	22.1 (21.0)	23.1 (16.6)
'Wholesale and retail trade services' CPA: $50 \oplus 51 \oplus 52$	10.9 (10.3)	34.7 (23.0)
'Financial intermediation services' CPA: 65	15.0 (15.4)	26.6 (15.7)
'Insurance services' CPA: 66	17.4 (16.6)	28.9 (17.9)
'Real estate services' CPA: 70	18.8 (17.2)	33.9 (20.9)
Average deviation of prices from 'commodity values'	21.6 (20.4)	37.7 (27.3)

tors of values are estimated from the relation (13), whilst the vectors of actual prices of production are estimated from the eigenequation (6). ${ }^{11}$ In order to assess the proximity of actual production prices to values, we use a normalization bias-free measure of deviation that has been proposed by Steedman and Tomkins (1998) and is known as the ' $d$ - distance'. The ' $d$ - distance' is defined as $d \equiv \sqrt{2(1-\cos \theta)}$, where $\theta$ is the Euclidean angle between the vectors $\pi_{i}^{\top}\left(\hat{\mathbf{v}}_{i}\right)^{-1}$ and $\mathbf{e}, \hat{\mathbf{v}}_{i}$ a diagonal matrix formed from the elements of $\mathbf{v}_{i}$ and $\pi_{i}^{\top}\left(\hat{\mathbf{v}}_{i}\right)^{-1}$ the ratio of prices to values. ${ }^{12}$

The first row of Table 1 refers to the deviations of prices from labour values, ${ }^{13}$ whilst the remaining rows report the deviations of prices from commodity values. ${ }^{14}$ The last

[^5]row refers to the average deviations of prices from commodity values, i.e., the sum of the deviations divided by the total number of commodities that are used as value bases.

In order to get a complete picture of the price-value deviations, in Figure 1 (2) we display the deviations of the vector of production (market) prices from each vector of commodity values for both years of our analysis. The deviations for the year 1995 (2005) are measured in the vertical (horizontal) axis, whilst the price-labour value deviations are taken as the origin of the axes.

The points below (above) the horizontal axes indicate price-commodity value deviations less (greater) than the price-labour value deviations for the year 1995, whilst the points on the left (right) side of the vertical axes indicate price-commodity value deviations less (greater) than the price-labour value deviations for the year 2005. Thus, the points on the lower-left (upper-right) quadrants of the figures indicate vectors of commodity values that are better (worse) approximations of prices than labour values for both years of our analysis.

From the Table 1, Figures 1-2, and the associated numerical results, we arrive at the following conclusions:
(i). The deviation of the vector of actual production (market) prices from the vector of labour values for the year 1995 is almost $14 \%$ (32\%), whilst that for the year 2005 is almost $13.6 \%$ (21.8\%). Furthermore, the actual 'relative rate of profit', $\rho(\equiv r / R)$, where $R\left(\equiv\left(\lambda_{\mathrm{A}}\right)^{-1}-1\right)$ denotes the maximum rate of profit, is almost $39.1 \%(r \simeq$ $33.6 \%, R \simeq 85.9 \%$ ) for the year 1995 and almost $36.8 \%$ for the year $2005(r \simeq$

Figure 1. Deviations of actual production prices from values; Swedish economy, 1995 and 2005


Figure 2. Deviations of market prices from values; Swedish economy, 1995 and 2005

$29.7 \%, R \simeq 80.7 \%) .{ }^{15}$
(ii). The average deviations of actual production (market) prices from commodity values are in the area of $21.6 \%(37.7 \%)$ for the year 1995 and in the area of $20.4 \%$ (27.3\%) for the year 2005.
(iii). The deviation of actual production prices from the vector of commodity values associated with the aggregate commodity of sectors ${ }^{16} 50$ ('Trade, maintenance and repair services of motor vehicles and motorcycles; retail sale of automotive fuel'), 51 ('Wholesale trade and commission trade services, except of motor vehicles and motorcycles') and 52 ('Retail trade services, except of motor vehicles and motorcycles; repair services of personal and household goods') is less than the corresponding actual production price-labour value deviation for both years of our analysis.
(iv). The deviations of market prices from the vectors of commodity values associated with commodities 40 ('Energy products'), 45 ('Construction work'), 65 ('Financial intermediation services') and 66 ('Insurance services') are less than the corresponding market price-labour value deviation for both years of our analysis. Furthermore, the deviations of market prices from the vectors of commodity values associated with commodities (a) 02 ('Products of forestry') and 18 ('Wearing apparels') for the year 1995;

[^6]and (b) 41 ('Services of water') and 70 ('Real estate services') for the year 2005 are less than the corresponding market price-labour value deviations.
(v). The smallest actual production price-value deviation for the year 1995 (2005) is $10.9 \%(10.3 \%)$ and corresponds to the vector of commodity values associated with the aggregate commodity of the sectors 50,51 and 52 , whilst the smallest market pricevalue deviation for the year 1995 (2005) is almost $23.1 \%$ ( $15.7 \%$ ) and corresponds to the vector of commodity values associated with the commodity 'Construction work' ('Financial intermediation services'). ${ }^{17}$
(vi). The largest actual production price-value deviation for the year 1995 (2005) is $33.4 \% ~(30.8 \%)$ and corresponds to the vector of commodity values associated with the commodity 'Basic metals', whilst the largest market price-value deviation for the year 1995 (2005) is $46.9 \%$ ( $39.8 \%$ ) and corresponds to the vector of commodity values associated with the commodity 'Basic metals' ('Secondary raw materials').

## CONCLUDING REMARKS

This paper explored the relationships between the labour values, actual prices and commodity values of the Swedish economy for the years 1995 and 2005. Regarding the deviations of prices from labour values, our results are in absolute accordance with the findings of other empirical studies. However, it has been found that there exist vectors of commodity values that are better approximations of actual prices than labour values. The results of this study do not (or, more precisely, cannot) provide support to an alternative value theory; on the contrary, cast doubts on the logic of the so-called 'empirical labour theory of value' (Stigler, 1958, p. 361), in the sense that the empirical investigation of the relationships between values and prices should not a priori neglect alternative value bases. Future research efforts should use more disaggregated input-output data from various countries and concretize the model by including the presence of fixed capital and the degree of its utilization, depreciation, turnover times, taxes and subsidies, and joint-product activities.

## APPENDIX 1: A NOTE ON THE DATA

The SIOT and the corresponding levels of sectoral employment of the Swedish economy (for the years 1995, 2000 and 2005) are available via the Eurostat website (http:// ec.europa.eu/eurostat). Given that technical change over time could be considered as rather 'slow', we have chosen to apply our analysis to the tables of the years 1995 and 2005. As is well known, the SIOT are derived from the 'System of National Accounts'

[^7](SNA) framework of the Supply and Use tables (SUT) (see, e.g., United Nations, 1999, chs 2-4; Eurostat, 2008, ch. 11), whilst the level of sectoral disaggregation depends on the statistical practices of the relevant national offices (e.g., some European Union member states compile tables that, initially, include 2000 to 3000 products (see Eurostat, 2008, p. 43)). The SIOT published by Eurostat describe 59 products, which are classified according to CPA ('Classification of Product by Activity'). The described products of the Swedish economy and their correspondence to CPA are reported in Table A1 below. However, all the elements associated with the product 12 ('Uranium and thorium ores') equal zero and, therefore, we remove them from our analysis. Furthermore, Statistics Sweden has aggregated, due to confidentiality reasons, the products 14 ('Other mining and quarrying products') and 16 ('Tobacco products') with the products 13 ('Metal ores') and 15 ('Food products and beverages'), respectively, whilst the products 51 ('Wholesale trade and commission trade services, except of motor vehicles and motorcycles') and 52 ('Retail trade services, except of motor vehicles and motorcycles; repair services of personal and household goods') are aggregated with the product 50 ('Trade, maintenance and repair services of motor vehicles and motorcycles; retail sale of automotive fuel'). Additionally, for the year 2005, the products 32 ('Radio, television and communication equipment and apparatus') and 74 ('Other business services') are aggregated with the products 31 ('Electrical machinery and apparatus n.e.c.') and 73 ('Research and development services'), respectively. Finally, since the labour input that corresponds to the production of the product 11 ('Crude petroleum and natural gas; services incidental to oil and gas extraction excluding surveying') equals zero for both of the years, we aggregate the product 11 with the product 13 . Thus, we derive SIOT of dimensions $53 \times 53$ for the year 1995 and $51 \times 51$ for the year 2005. It goes without saying that statistical practices, such as (i) the method used to convert SUT into SIOT (for a review of these methods see, e.g., ten Raa and Rueda-Cantuche (2003, pp. 441-447)); and (ii) the level of sectoral disaggregation, can bias the empirical results of our analysis.

The market prices of all products are taken to be equal to 1 ; that is to say, the physical unit of measurement of each product is that unit which is worth of a monetary unit (see, e.g., Miller and Blair, 1985, p. 356). Thus, the matrix of input-output coefficients, $\mathbf{A}$, is obtained by dividing element-by-element the inputs of each sector by its gross output.

It need hardly be said that, in the real world, labour is not homogeneous and, therefore, the levels of sectoral employment derived from the SIOT correspond to heterogeneous labour. However, in the case of economic systems with heterogeneous labour, any attempt to explore the price-value deviation(s) is devoid of economic sense. Thus, in accordance with most of the relevant empirical studies, we use wage differentials to homogenize the sectoral employment (see, e.g., Sraffa, 1960, §10; Kurz and Salvadori, 1995, pp. 322-325), i.e., the vector of inputs in direct homogeneous labour, $\mathbf{l} \equiv\left[l_{\mathrm{j}}\right]$, is determined as follows: $l_{\mathrm{j}}=\left(L_{j} / x_{j}\right)\left(w_{j}^{\mathrm{M}} / w_{\text {min }}^{\mathrm{M}}\right)$, where $L_{j}, x_{j}, w_{j}^{\mathrm{M}}$ denote the total employment, gross output and money wage rate, in terms of market prices, of the $j$ th sector, respectively, and $w_{\text {min }}^{\mathrm{M}}$ the minimum sectoral money wage rate in terms of market prices. Alternatively, the homogenization of employment could be achieved, for example,
through the economy's average wage; in fact, the empirical results are robust to alternative normalizations with respect to homogenization of labour inputs. The described reductions of course are only meaningful when the relative wages express with precision the differences in skills and intensity of labour that is employed by each sector of the economy (ibid.). In any other case the choice of homogenization procedure is, of necessity, arbitrary. Furthermore, by assuming that workers do not save and that their consumption has the same composition as the vector of the final consumption expenditures of the household sector, $\mathbf{h}_{c e}$, directly obtained from the input-output tables, the vector of the real wage rate, $\mathbf{b} \equiv\left[b_{i}\right]$, is determined as follows: $\mathbf{b}=\left(w_{\text {min }}^{M} / \mathbf{e}^{\mathrm{T}} \mathbf{h}_{c e}\right) \mathbf{h}_{c e}$, where $\mathbf{e}^{\mathrm{T}} \equiv[1,1, \ldots, 1]$ denotes the row summation vector identified with the vector of market prices (see also, e.g., Okishio and Nakatani, 1985, pp. 66-67). Finally, it must be noted that the available input-output tables do not include inter-industry data on fixed capital stocks and on non-competitive imports. As a result, our investigation is restricted to a closed economy with circulating capital.

Table A1. Product Classification

No	CPA	Nomenclature
1	01	Products of agriculture, hunting and related services
2	02	Products of forestry, logging and related services
3	05	Fish and other fishing products; services incidental of fishing
4	10	Coal and lignite; peat
5	11	Crude petroleum and natural gas; services incidental to oil and gas extraction exclud-   ing surveying
6	12	Uranium and thorium ores
7	13	Metal ores
8	14	Other mining and quarrying products
9	15	Food products and beverages
10	16	Tobacco products
11	17	Textiles
12	18	Wearing apparel; furs
13	19	Leather and leather products
14	20	Wood and products of wood and cork (except furniture); articles of straw and plaiting   materials
15	21	Pulp, paper and paper products
16	22	Printed matter and recorded media
17	23	Coke, refined petroleum products and nuclear fuels
18	24	Chemicals, chemical products and man-made fibres
19	25	Rubber and plastic products
20	26	Other non-metallic mineral products
21	27	Basic metals
22	28	Fabricated metal products, except machinery and equipment
23	29	Machinery and equipment n.e.c.
24	30	Office machinery and computers
25	31	Electrical machinery and apparatus n.e.c.


26	32	Radio, television and communication equipment and apparatus
27	33	Medical, precision and optical instruments, watches and clocks
28	34	Motor vehicles, trailers and semi-trailers
29	35	Other transport equipment
30	36	Furniture; other manufactured goods n.e.c.
31	37	Secondary raw materials
32	40	Electrical energy, gas, steam and hot water
33	41	Collected and purified water, distribution services of water
34	45	Construction work
35	50	Trade, maintenance and repair services of motor vehicles and motorcycles; retail sale   of automotive fuel
36	51	Wholesale trade and commission trade services, except of motor vehicles and motor-   cycles
37	52	Retail trade services, except of motor vehicles and motorcycles; repair services of   personal and household goods
38	55	Hotel and restaurant services
39	60	Land transport; transport via pipeline services
40	61	Water transport services
41	62	Air transport services
42	63	Supporting and auxiliary transport services; travel agency services
43	64	Post and telecommunication services
44	65	Financial intermediation services, except insurance and pension funding services
45	66	Insurance and pension funding services, except compulsory social security services
46	67	Services auxiliary to financial intermediation
47	70	Real estate services
48	71	Renting services of machinery and equipment without operator and of personal and   household goods
49	72	Computer and related services
50	73	Research and development services
51	74	Other business services
52	75	Public administration and defence services; compulsory social security services
53	80	Education services
54	85	Health and social work services
55	90	Sewage and refuse disposal services, sanitation and similar services
56	91	Membership organisation services n.e.c.
57	92	Recreational, cultural and sporting services
58	93	Other services
59	95	Private households with employed persons

## APPENDIX 2: ON THE RELATIONSHIPS BETWEEN PRICES AND VALUES

The system of production prices (see relations (3)-(4)) can be rewritten on the basis of the complete matrix, $\mathbf{C}$, as follows

$$
\begin{equation*}
\pi^{\mathrm{T}}=\boldsymbol{\pi}^{\mathrm{T}} \mathbf{C}+\mathbf{k}^{\mathrm{T}} \tag{A.1}
\end{equation*}
$$

where $\pi^{\mathrm{T}} \equiv\left(\mathbf{p}^{\mathrm{T}}, w\right)$ is the 'complete' à la Bródy (1970) price vector, $\mathbf{k}^{\mathrm{T}} \equiv \boldsymbol{\pi}^{\mathrm{T}} \mathbf{C D}$ is the vector of sectoral profit coefficients, $\mathbf{D} \equiv\left(\begin{array}{ll}\hat{\mathbf{r}} & 0 \\ 0 & 0\end{array}\right)$ and $\hat{\mathbf{r}}$ is an $n \times n$ diagonal matrix formed by the sectoral profit rates. Relation (A.1) may be written as

$$
\begin{align*}
& \pi_{i}^{\mathrm{T}}=\pi_{i}^{\mathrm{T}} \mathbf{C}_{(i)}+p_{i} \mathbf{c}_{i}^{\mathrm{T}}+\mathbf{k}_{i}^{\mathrm{T}}  \tag{A.2}\\
& p_{i}=\pi_{i}^{\mathrm{T}} \mathbf{c}^{i}+p_{i} c_{i i}+k_{i} \tag{A.3}
\end{align*}
$$

where $\pi^{\mathrm{T}} \equiv\left(p_{1}, p_{2}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{m}\right)\left(\mathbf{k}_{i}^{\mathrm{T}} \equiv\left(\pi_{i}^{\mathrm{T}} \mathbf{C}_{(i)}+p_{i} \mathbf{c}_{i}^{\mathrm{T}}\right) \mathbf{D}_{(i)}\right)$ is the vector derived from $\pi^{\mathrm{T}}\left(\mathbf{k}^{\mathrm{T}}\right)$ if we extract its $i$ th element, $\mathbf{D}_{(i)}$ is the $n \times n$ diagonal matrix derived from $\mathbf{D}$ by extracting its $i$ th row and column, and $p_{i}\left(k_{i}\right)$ is the $i$ th element of $\pi^{\mathrm{T}}\left(\mathbf{k}^{\mathrm{T}}\right)$. Relations (A.2)-(A.3) may be interpreted as the reduction of the 'production costs' (or, more precisely, the prices; see Sraffa, 1960, §7) to the 'production cost' (the price) of the commodity $i$ (see Dmitriev, 1974, pp. 61-64). From relation (A.2) we obtain

$$
\pi_{i}^{\mathrm{T}}=p_{i} \mathbf{c}_{i}^{\mathrm{T}}\left(\mathbb{I}-\mathbf{C}_{(i)}\right)^{-1}+\mathbf{k}_{i}^{\mathrm{T}}\left(\mathbf{I}-\mathbf{C}_{(i)}\right)^{-1}
$$

or, recalling relation (13),

$$
\begin{equation*}
\boldsymbol{\pi}_{i}^{\mathrm{T}}=p_{i} \mathbf{v}_{i}^{\mathrm{T}}+\mathbf{k}_{i}^{\mathrm{T}}\left(\mathbf{I}-\mathbf{C}_{(i)}\right)^{-1} \tag{A.4}
\end{equation*}
$$

Substituting $\mathbf{k}_{i}^{\top} \equiv\left(\pi_{i}^{\top} \mathbf{C}_{(i)}+p_{i} \mathbf{c}_{i}^{\top}\right) \mathbf{D}_{(i)}$ in (A.4) and after rearrangement we obtain

$$
\begin{equation*}
\boldsymbol{\pi}_{i}^{\mathrm{T}}=\mathbf{v}_{i}^{\mathrm{T}} \mathbf{T}_{(i)} \tag{A.5}
\end{equation*}
$$

where $\mathbf{T}_{(i)} \equiv p_{i}\left(\mathbf{I}-\mathbf{C}_{(i)}\right)\left(\mathbf{I}+\mathbf{D}_{(i)}\right)\left[\mathbf{I}-\mathbf{C}_{(i)}\left(\mathbf{I}+\mathbf{D}_{(i)}\right)\right]^{-1}$ is a linear operator 'transforming' commodity $i$ values into prices. If $\pi_{i}^{\top}=\pi_{m}^{\top}=\mathbf{p}^{\top}$, i.e., prices are reduced to the price of labour, then we obtain $\mathbf{p}^{\mathrm{T}}=\mathbf{v}^{\mathrm{T}} \mathbf{T}_{(m)}$, where $\mathbb{T}_{(m)} \equiv w(\mathbf{I}-\mathbf{A})(\mathbf{I}+\hat{\mathbf{r}})[\mathbf{I}-\mathbf{A}(\mathbf{I}+\hat{\mathbf{r}})]^{-1}$ is the well known linear operator 'transforming' labour values into prices (see Pasinetti, 1977, ch. 5, Appendix; Reati, 1986).

When $\hat{\mathbf{r}}=\mathbf{0}$ and, therefore, $\mathbf{k}^{\mathrm{T}}=\mathbf{0}^{\mathrm{T}}$, relation (A.4) implies that

$$
\begin{equation*}
\pi_{i}^{\mathrm{T}}=p_{i} \mathbf{v}_{i}^{\mathrm{T}} \tag{A.6}
\end{equation*}
$$

Thus, commodity $i$ values are proportional to prices. Finally, in the special case where the vectors of sectoral profit coefficients, $\mathbf{k}_{i}^{\top}$, and direct input requirements of commodity $i, \mathbf{c}_{i}^{\top}$, are linearly dependent, i.e., $\mathbf{k}_{i}^{\mathrm{T}}=z \mathbf{c}_{i}^{\top}$, where $z$ is a positive real number, then from relation (A.4) we obtain

$$
\begin{equation*}
\pi_{i}^{\mathrm{T}}=\left(p_{i}+z\right) \mathbf{v}_{i}^{\mathrm{T}} \tag{A.7}
\end{equation*}
$$

Therefore, commodity $i$ values are proportional to prices.

## APPENDIX 3: LABOUR VALUES (LV) AND PRICES OF PRODUCTION (POP) OF THE SWEDISH ECONOMY

Table 3.1. LV; 1995

CPA	LV	CPA	LV
01	0.0096	45	0.0143
02	0.0046	$50 \oplus 51 \oplus 52$	0.0132
05	0.0100	55	0.0128
10	0.0124	60	0.0121
$11 \oplus 13 \oplus 14$	0.0111	61	0.0117
$15 \oplus 16$	0.0116	62	0.0126
17	0.0137	63	0.0104
18	0.0145	64	0.0124
19	0.0135	65	0.0085
20	0.0101	66	0.0123
21	0.0089	67	0.0156
22	0.0129	70	0.0061
23	0.0112	71	0.0113
24	0.0102	72	0.0144
25	0.0126	73	0.0150
26	0.0123	74	0.0143
27	0.0108	75	0.0143
28	0.0133	80	0.0164
29	0.0134	85	0.0173
30	0.0139	90	0.0109
31	0.0136	91	0.0184
32	0.0135	92	0.0131
33	0.0137	93	0.0125
34	0.0130	95	0.0219
35	0.0140	REAL WAGE	0.4693
36	0.0173		
37	0.0114		
40	0.0060		
41	0.0077		

Table 3.2. POP; 1995

CPA	POP	CPA	POP
01	0.1194	45	0.1448
02	0.0414	$50 \oplus 51 \oplus 52$	0.1236
05	0.1232	55	0.1360
10	0.1436	60	0.1218
$11 \oplus 13 \oplus 14$	0.1222	61	0.1597
$15 \oplus 16$	0.1585	62	0.1388
17	0.1540	63	0.1120
18	0.1690	64	0.1217
19	0.1655	65	0.0799
20	0.1115	66	0.1088
21	0.1062	67	0.1407
22	0.1391	70	0.0697
23	0.1596	71	0.1212
24	0.1224	72	0.1480
25	0.1459	73	0.1475
26	0.1348	74	0.1445
27	0.1519	75	0.1333
28	0.1527	80	0.1345
29	0.1551	85	0.1410
30	0.1568	90	0.1118
31	0.1582	91	0.1535
32	0.1717	92	0.1281
33	0.1502	93	0.1259
34	0.1742	95	0.1476
35	0.1622	REAL WAGE	5.0518
36	0.1841		
37	0.1458		
40	0.0659		
41	0.0872		

Table 3.3. LV; 2005

CPA	LV	CPA	LV
01	0.0057	$50 \oplus 51 \oplus 52$	0.0057
02	0.0042	55	0.0056
05	0.0044	60	0.0049
10	0.0055	61	0.0049
$11 \oplus 13 \oplus 14$	0.0041	62	0.0052
$15 \oplus 16$	0.0055	63	0.0046
17	0.0058	64	0.0051
18	0.0052	65	0.0041
19	0.0054	66	0.0042
20	0.0050	67	0.0068
21	0.0048	70	0.0028
22	0.0059	71	0.0047
23	0.0041	72	0.0058
24	0.0041	$73 \oplus 74$	0.0057
25	0.0055	75	0.0059
26	0.0054	80	0.0069
27	0.0049	85	0.0072
28	0.0055	90	0.0047
29	0.0058	91	0.0075
30	0.0059	92	0.0052
$31 \oplus 32$	0.0055	93	0.0043
33	0.0055	95	0.0089
34	0.0056	REAL WAGE	0.5037
35	0.0060		
36	0.0071		
37	0.0047		
40	0.0029		
41	0.0041		
45	0.0062		

Table 3.4. POP; 2005

CPA	POP	CPA	POP			
01	0.1558	$50 \oplus 51 \oplus 52$	0.1315			
02	0.0999	55	0.1402			
05	0.1280	60	0.1245			
10	0.1594	61	0.1571			
$11 \oplus 13 \oplus 14$	0.1119	62	0.1573			
$15 \oplus 16$	0.1657	63	0.1332			
17	0.1499	64	0.1346			
18	0.1468	65	0.0879			
19	0.1504	66	0.0872			
20	0.1430	67	0.1414			
21	0.1416	70	0.0774			
22	0.1551	71	0.1162			
23	0.1432	72	0.1343			
24	0.1164	$73 \oplus 74$	0.1359			
25	0.1482	75	0.1309			
26	0.1481	80	0.1367			
27	0.1600	85	0.1399			
28	0.1513	90	0.1230			
29	0.1659	91	0.1522			
30	0.1589	92	0.1269			
$31 \oplus 32$	0.1588	93	0.0979			
33	0.1465	95	0.1505			
34	0.1880	REAL WAGE	12.9749			
35	0.1630					
36	0.1892					
37	0.1347					
40	0.0784					
41	0.1057					
45	0.1503					

## APPENDIX 4: COMMODITY VALUES (CV) OF THE SWEDISH ECONOMY

Table 4.1. 'Wholesale and retail trade services values'; 1995

CPA	CV	CPA	CV
01	0.2175	45	0.2672
02	0.0786	$\mathbf{5 0} \oplus 51 \oplus 52$	0.2190
05	0.2028	55	0.2454
10	0.2339	60	0.2269
$11 \oplus 13 \oplus 14$	0.2146	61	0.1998
$15 \oplus 16$	0.2356	62	0.2114
17	0.2505	63	0.1804
18	0.2591	64	0.2002
19	0.2593	65	0.1309
20	0.1865	66	0.1846
21	0.1882	67	0.2360
22	0.2175	70	0.1105
23	0.2241	71	0.2174
24	0.1876	72	0.2440
25	0.2380	73	0.2569
26	0.2542	74	0.2366
27	0.2926	75	0.2330
28	0.2722	80	0.2503
29	0.2767	85	0.2656
30	0.2853	90	0.2033
31	0.2701	91	0.2906
32	0.2851	92	0.2502
33	0.2622	93	0.2377
34	0.2823	95	0.3063
35	0.2722	REAL WAGE	14.0095
36	0.3250		
37	0.3091		
40	0.1070		
41	0.1447		

Table 4.2. 'Wholesale and retail trade services values'; 2005

CPA	CV	CPA	CV
01	0.3042	$\mathbf{5 0} \oplus 51 \oplus 52$	0.2450
02	0.1982	55	0.2793
05	0.2557	60	0.2597
10	0.2603	61	0.2277
$11 \oplus 13 \oplus 14$	0.2166	62	0.2617
$15 \oplus 16$	0.2815	63	0.2185
17	0.2664	64	0.2236
18	0.2384	65	0.1611
19	0.2547	66	0.1639
20	0.2416	67	0.2667
21	0.2486	70	0.1312
22	0.2542	71	0.2227
23	0.2162	72	0.2429
24	0.1918	$73 \oplus 74$	0.2459
25	0.2651	75	0.2434
26	0.2737	80	0.2768
27	0.3048	85	0.2903
28	0.2782	90	0.2560
29	0.2972	91	0.3118
30	0.2942	92	0.2425
$31 \oplus 32$	0.2637	93	0.1986
33	0.2655	95	0.3335
34	0.2986	REAL WAGE	37.4016
35	0.2916		
36	0.3337		
37	0.2245		
40	0.1363		
41	0.1876		
45	0.2930		

Table 4.3. 'Construction work values'; 1995

CPA	CV	CPA	CV
01	0.0679	$\mathbf{4 5}$	$\mathbf{0 . 0 6 9 7}$
02	0.0303	$50 \oplus 51 \oplus 52$	0.0637
05	0.0476	55	0.0725
10	0.0676	60	0.0623
$11 \oplus 13 \oplus 14$	0.0709	61	0.0592
$15 \oplus 16$	0.0671	62	0.0666
17	0.0657	63	0.0639
18	0.0685	64	0.0830
19	0.0689	65	0.0472
20	0.0547	66	0.0788
21	0.0497	67	0.0812
22	0.0647	70	0.1209
23	0.0731	71	0.0607
24	0.0537	72	0.0687
25	0.0632	73	0.0756
26	0.0657	74	0.0704
27	0.0618	75	0.0894
28	0.0665	80	0.0872
29	0.0648	85	0.0834
30	0.0650	90	0.0667
31	0.0674	91	0.0972
32	0.0649	92	0.0759
33	0.0645	93	0.0650
34	0.0622	95	0.0814
35	0.0684	REAL WAGE	3.7240
36	0.0851		
37	0.0611		
40	0.0502		
41	0.0990		

Table 4.4. 'Financial intermediation services values'; 2005

CPA	CV	CPA	CV
01	0.0976	$50 \oplus 51 \oplus 52$	0.0895
02	0.0709	55	0.0910
05	0.0809	60	0.0762
10	0.0897	61	0.0904
$11 \oplus 13 \oplus 14$	0.0657	62	0.0846
$15 \oplus 16$	0.0903	63	0.0754
17	0.0895	64	0.0852
18	0.0827	65	0.1001
19	0.0850	66	0.1201
20	0.0830	67	0.1065
21	0.0797	70	0.0921
22	0.0916	71	0.0744
23	0.0701	72	0.0887
24	0.0666	$73 \oplus 74$	0.0881
25	0.0851	75	0.0912
26	0.0850	80	0.0962
27	0.0828	85	0.0972
28	0.0864	90	0.0847
29	0.0921	91	0.1111
30	0.0951	92	0.0860
$31 \oplus 32$	0.0885	93	0.0725
33	0.0853	95	0.1109
34	0.0939	REAL WAGE	12.3952
35	0.0927		
36	0.1109		
37	0.0766		
40	0.0522		
41	0.0720		
45	0.0925		

## References

1. Bidard, C. and Ehrbar, H. G. (2007), "Relative prices in the Classical theory: facts and figures", Bulletin of Political Economy, Vol.1, pp.161-211.
2. Bródy, A. (1970), Proportions, Prices and Planning. A Mathematical Restatement of the Labor Theory of Value, Akadémiai Kiadó, Budapest.
3. Chilcote, E. B. (1997), "Interindustry Structure, Relative Prices, and Productivity: An Input-Output Study of the U.S. and O.E.C.D. Countries", Ph.D. thesis, The New School for Social Research, New York.
4. Cockshott, P. and Cottrell, A., Michaelson, G. (1995), "Testing Marx: some new results from UK data", Capital and Class, Vol.55, pp.103-129.
5. Cockshott, P. and Cottrell, A. (1997), "Labour time versus alternative value bases: a research note", Cambridge Journal of Economics, Vol.21, pp.545-549.
6. Díaz, E. and Osuna, R. (2005-2006), "Can we trust in cross-sectional price-value correlation measures? Some evidence from the case of Spain", Journal of Post Keynesian Economics, Vol.28, pp.345-363.
7. Díaz, E. and Osuna, R. (2009), "From correlation to dispersion: geometry of the price-value deviation", Empirical Economics, Vol.36, pp.427-440.
8. Dmitriev, V. K. (1974), Economic Essays on Value, Competition and Utility, Cambridge University Press, London.
9. Eurostat (2008), Eurostat Manual of Supply, Use and Input-Output Tables, Office for the Official Publications of the European Communities, Luxemburg.
10. Gintis, H. and Bowles, S. (1981), "Structure and practice in the labor theory of value", Review of Radical Political Economics, Vol.12, pp.1-26.
11. Kurz, H. D. and Salvadori, N. (1995), Theory of Production. A Long-Period Analysis, Cambridge University Press, Cambridge.
12. Manresa, A. and Sancho, F., Vegara, J. M. (1998), "Measuring commodities' commodity content", Economic Systems Research, Vol.10, pp.357-365.
13. Mariolis, T. (2000), "Positive (Non-Positive) Surplus Value with Non-Positive (Positive) Profits" (in Greek), Political Economy. Review of Political Economy and Social Sciences, Vol.7, pp.81-126.
14. Mariolis, T. (2001), "On V. K. Dmitriev's Contribution to the so-called 'Transformation Problem' and to the Profit Theory", Political Economy. Review of Political Economy and Social Sciences, Vol.9, pp.45-60.
15. Mariolis, T. (2010), "Norm Bounds for a Transformed Price Vector in Sraffian Systems", Applied Mathematical Sciences, Vol.4, pp.551-574.
16. Mariolis, T. and Rodousaki, E. (2008), "Total Requirements for Gross Output and Intersectoral Linkages: A Note on Dmitriev's Contribution to the Theory of Profits", paper presented at the Tenth Conference of Greek Historians of Economic Thought, 30-31 May 2008, University of Thessalia, Greece.
17. Miller, R. and Blair, P. (1985), Input-Output Analysis: Foundations and Extensions, Prentice Hall, New Jersey.
18. Ochoa, E. (1989), "Value, prices and wage-profit curves in the U.S. economy", Cambridge Journal of Economics, Vol.13, pp.413-429.
19. Okishio, N. (1963), "A Mathematical Note on Marxian Theorems", Weltwirtschaftliches Archiv, Vol.91, pp.287-299.
20. Okishio, N. and Nakatani, T. (1985), "A measurement of the rate of surplus value", in M. Krüger, P. Flaschel (eds) (1993), Nobuo Okishio-Essays on Political Econ-
omy, Peter Lang, Frankfurt am Main.
21. Parys, W. (1982), "The deviation of prices from labor values", The American Economic Review, Vol.72, pp.1208-1212.
22. Pasinetti, L. (1973), "The notion of vertical integration in economic analysis", Metroeconomica, Vol.25, pp.1-29.
23. Pasinetti, L. (1977), Lectures on the Theory of Production, Columbia University Press, New York.
24. Petrović, P. (1987), "The deviation of production prices from labour values: some methodological and empirical evidence", Cambridge Journal of Economics, Vol.11, pp.197-210.
25. Reati, A. (1986), "La transformation des valeurs en prix non concurrentiels", Economie Appliquée, Vol.39, pp.157-179.
26. Roemer, J. E. (1986), Value, Exploitation and Class, Harwood Academic Publishers, Chur.
27. Shaikh, A. (1984), "The transformation from Marx to Sraffa", in A. Freeman and E. Mandel (eds), Ricardo, Marx and Sraffa, Verso, London.
28. Shaikh, A. (1998), "The empirical strength of the labour theory of value", in R. Bellofiore (ed.), Marxian Economics. A Reappraisal, vol.2, Macmillan, London.
29. Sraffa, P. (1960), Production of Commodities by Means of Commodities. Prelude to a Critique of Economic Theory, Cambridge University Press, Cambridge.
30. Steedman, I. (1977), Marx after Sraffa, New Left Books, London.
31. Steedman, I. and Tomkins, J. (1998), "On measuring the deviation of prices from values", Cambridge Journal of Economics, Vol.22, pp.379-385.
32. Stigler, G. J. (1958), "Ricardo and the $93 \%$ labor theory of value", The American Economic Review, Vol.48, pp.357-367.
33. ten Raa, T. and Rueda-Cantuche, J. M. (2003), "The construction of input-output coefficients matrices in an axiomatic context: some further considerations", Economic Systems Research, Vol.15, pp.439-455.
34. Tsoulfidis, L. (2008), "Price-value deviations: further evidence from input-output data of Japan", International Review of Applied Economics, Vol.22, pp.707-724.
35. Tsoulfidis, L. and Maniatis, T. (2002), "Values, prices of production and market prices: some more evidence from the Greek economy", Cambridge Journal of Economics, Vol.26, pp.359-369.
36. Tsoulfidis, L. and Mariolis, T. (2007), "Labour values, prices of production and the effects of income distribution: evidence from the Greek economy", Economic Systems Research, Vol.19, pp.425-437.
37. United Nations (1999), Handbook of Input-Output Table. Compilation and Analysis. Studies in Methods. Handbook of National Accounting, United Nations, Department for Economic and Social Affairs, Statistics Division, Series F, No.74, New York.

[^0]:    * Department of Public Administration, Panteion University, Athens, Greece

    Correspondence Address: George Soklis, Department of Public Administration, Panteion University, 136 Syngrou Ave, Athens 17671, Greece; Email: gsok @hotmail.gr
    ${ }^{1}$ Earlier versions of this paper were presented at a Workshop of the 'Study Group on Sraffian Economics' at the Panteion University, in December 2008, at the ' $11^{\text {th }}$ Conference of the Greek Historians of Economic Thought' and at the ' 1 st Conference of the Greek Scientific Association of Political Economy' at the University of Crete, in June 2009: I am indebted to Apostolos Dedousopoulos, Alexis Ioannides, Eleftheria Rodousaki, Nikolaos Rodousakis, Nikos Theocarakis, Lefteris Tsoulfidis, Andriana Vlachou and, in particular, Theodore Mariolis for helpful discussions and comments. I am also grateful to three anonymous referees of this journal for helpful comments and suggestions. It goes without saying that the responsibility for the views expressed and any errors rests entirely with the author.
    ${ }^{2}$ See Shaikh (1984, 1998), Petrović (1987), Ochoa (1989), Cockshott et al. (1995), Cockshott and Cottrell (1997), Chilcote (1997), Tsoulfidis and Maniatis (2002), Tsoulfidis and Mariolis (2007), Tsoulfidis (2008), inter alia.

[^1]:    ${ }^{3}$ Cockshott and Cottrell (1997) considered as value bases the commodities 'Electricity', 'Oil products' and 'Iron and Steel', whilst Tsoulfidis and Maniatis (2002) considered the commodities 'Agricultural products', 'Electricity', 'Oil products' and 'Chemicals'.
    4 See Appendix 1 for the available input-output data as well as the construction of relevant variables.
    ${ }^{5}$ For a detailed discussion of the problem of measuring the deviation of prices from labour values, see, e.g., Steedman and Tomkins (1998) and Díaz and Osuna (2005-2006, 2009). For the theoretical investigation of the relationships between prices and labour values, see Parys (1982) and Bidard and Ehrbar (2007), whilst for the so-called problem of transforming values into prices, see, e.g., Pasinetti (1977, ch. 5, Appendix) and Reati (1986). Finally, for a new approach to the relationships between prices and values, see Mariolis (2010).

[^2]:    6 We hypothesize that wages are paid ante factum (for the general case, see Steedman, 1977, pp. 103105) and that there are no savings out of this income in order to follow most of the empirical studies on this topic (see footnote 2).

[^3]:    7 Due to our assumption that labour is not an input to the household sector, the ( $m, m$ )th element of matrix $\mathbf{C}$ equals zero. However, there is not an analogous assumption for the other production inputs, i.e., the on diagonal elements of matrix $\mathbf{A}$ can be positive.
    ${ }^{8}$ It has been argued (see Mariolis and Rodousaki, 2008) that the concept of total requirements for gross output was introduced by Vladimir K. Dmitriev in his essay, published in 1898, on the theory of value in Ricardo (see Dmitriev, 1974, Essay 1).

[^4]:    9 Note that the aforesaid condition constitutes a general profitability condition, which includes the well known 'Fundamental Marxian Theorem' (see, e.g., Okishio, 1963).
    ${ }^{10}$ For the theoretical relationships between prices and values, see Appendix 2 (which is based on Mariolis, 2000; 2001).

[^5]:    ${ }^{11}$ Mathematica 7.0 is used in the calculations. The analytical results are available on request from the author.
    ${ }^{12}$ Note that for $i \neq m$ we get $\pi_{i}^{\mathrm{T}}=\left(p_{1}, p_{2}, \ldots, p_{i-1}, p_{i+1}, \ldots, w\right)$, whilst for $i=m$ we get $\pi_{i}^{\mathrm{T}}=\pi_{m}^{\mathrm{T}}=\mathbf{p}^{\mathrm{T}}$. Furthermore, the ' $d$-distance' between market prices and values is estimated on the basis of the Euclidean angle between the vectors $\left(\pi_{i}^{M}\right)^{\mathrm{T}}\left(\hat{\mathbf{v}}_{i}\right)^{-1}$ and $\mathbf{e}$, where $\left(\pi_{i}^{\mathrm{M}}\right)^{\mathrm{T}} \equiv\left(p_{1}^{\mathrm{M}}, p_{i}^{\mathrm{M}}, \ldots, p_{i-1 \mathrm{M}}^{\mathrm{M}}, p_{i+1}^{\mathrm{M}}, \ldots, p_{m}^{\mathrm{M}}\right)$ denotes the vector of market prices. Since market prices are taken to be equal to 1 (see Appendix 1), it follows that for $i \neq m$ we get $\left(\pi_{i}^{M}\right)^{\mathrm{T}}=\left(1,1,1,1, \ldots, w_{\text {min }}^{M}\right)$, whilst for $i=m$ we get $\left(\pi_{m}^{M}\right)^{\mathrm{T}}=\mathbf{e}^{\mathrm{T}}$. I am grateful to Theodore Mariolis for an enlightening discussion on this point.
    ${ }^{13}$ The vectors of labour values and actual prices of production for the year 1995 (2005) are reported in Appendix 3, Tables 3.1-3.2 (3.3-3.4). Note that we report the 'complete' à la Bródy (1970) vectors, i.e., we include the value/price of the real wage bundle as the last element of the vectors.
    ${ }^{14}$ The price-commodity value deviations that are found to be less than the corresponding price-labour value deviations are indicated by bold characters.

[^6]:    ${ }^{15}$ It should be noted that these results are in accordance with the findings of all the relevant empirical studies (see footnote 2), where the relative rate of profit is in the range of $17 \%-40 \%$, the actual production price-labour value deviation is in the range of $6 \%-20 \%$ and the market price-labour value deviation is in the range of $7 \%-37 \%$.
    ${ }^{16}$ For the degree of sectoral disaggregation of Sweden's input-output tables, see Appendix 1.

[^7]:    ${ }^{17}$ The aforesaid vectors of commodity values are reported in Appendix 4, Tables 4.1-4.4. The direct and indirect requirements of a commodity necessary to produce one unit of itself are indicated by bold characters.

